If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x-114=0
a = 2; b = -20; c = -114;
Δ = b2-4ac
Δ = -202-4·2·(-114)
Δ = 1312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1312}=\sqrt{16*82}=\sqrt{16}*\sqrt{82}=4\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{82}}{2*2}=\frac{20-4\sqrt{82}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{82}}{2*2}=\frac{20+4\sqrt{82}}{4} $
| -1.23(3-x)=-1.8 | | 3a-8=2a+7 | | 10-6y=-10 | | 12x-15-10x-15=4x-4 | | 3(4x–5)–5(2x–3)=4(x–1) | | 2x-30=4x-4 | | m/2-7=43 | | 227-w=281 | | 2/3b=10 | | 21–6x=–11–14x | | (3x+1)=(8x+7)= | | 0.6b=10 | | 7x+9=7x+ | | -10=9m-13-7m. | | 3/n+5=14 | | (12-x^2)/3=0 | | z/4+13=-91 | | 3(x+3)+3x=68 | | 4(5x-25)=-20(x-5) | | -8s-4+6=24 | | 3/8+p/87=17/8 | | (3x−5)^2=-49 | | 57=22+n | | 6(x-2)^3/4=48 | | -8x-2x-6=-5x+7x+8 | | 0.84x=506.52 | | n/5-11=19 | | 3x=62.4 | | 7x-5.8=8.2 | | 8x+5=5x+2 | | 44=(9-x)4 | | 10x+7=-8x-5 |